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Abstract

Thermal spray layers are formed on rough surfaces; however,
the flatening process on rough surfaces has not yet been
clarified. A mathematical flattening model which takes into
account the roughness of the substrate or previously coated
layers is proposed in this paper. As a result of surface
roughness, the flattenmg degree and the flatening time
decrease with increasing surface roughness in this model. In
addition, the characterization of surface rmoughness is
introduced for the flatening model. Several calculated cases
of the flattening model are shown.

THE FLATTENING PROCESS of impinged molten particles
onto substrates affects the mechanical and physical properties
of thermal sprayed coatings. The flattening process is one of
the most important processes in thermal sprayg, as it helps
one to understand the physics of thermal spray and the
characteristics of the sprayed layers. Many flattening models of
molten or liquid particle impingement on flat surfaces have
been proposed [1-6]. These mathematical models were
concerned with the flattening processes on smooth surfaces. In
addition to these models, many experimental investigations of
splat formation on both smooth and rough surfaces have been
reported [7-16).

Flttening processes on rough surfaces have been
investigated recently, Moreau et al [14] have shown that the
flattening degree and the flattening time of molybdenum splats
on both roughened glass and molybdenum surfaces were less
than on smooth surfaces. Leger et al [15] have shown that the
flattening degree of zirconia splats on roughened steel surfaces
decreases with increasing roughness in a relationship between
the flattening degree and the Reynolds number. Bianchi et al
[16] have shown that splat morphology on rough surfaces is
different from that on smooth surfaces.

How does the surface roughness influence the flattening
process in thermal spray coatings? First of all, we must
consider the geometry of the surface roughness. Let’sconsider
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an idealized roughened surface as shown in Fig. 1-a. The cones

which have height a and bottom radius & are aligned with
distance 7 between the bottom centers of adjacent coneson the
smooth, flat surface.

We can assume that an impinging molten particlebegins to
spread in the radial direction as a thin disk of thickness 4 at
the impinging point of the particle onto the substrate, and that
the thickness 4 is constant during flattening as shown inFig.
2.

We assume that a molten partkle impacts onto the
idealized rough surface, and we classify the roughness into
three cases: (1) the cone’s height @ is much larger than the
disk thickness 4, (2) the cone’s height is much smaller than
the disk thickness, and (3) the cone’s height is approximately
equal to the disk thickness.

In the spreading process in case (1), it can be considered
that the fluid in the impinging particle, mostly flows along the
valleys because the fluid has a velocity component
perpendicular to the surface. A part of the fluid encountering
the mountains climbs the slopes, then the liquid probably flies
off the mountain, and a splash occurs if the radial velocity is
large enough compared to the fluid surface tension. On the
other hand, the fluid probably travels around the mountains
and goes down the valleys if the radial velocity is not large
enough for the fluid to climb over the mountains. The
perpendicular velocity is largest at the disk center and is
smaller farther from the center. If the impinging velocity is
targe and roughness is much large compared to the splat
thickness, splashing possibly begins at impact and some of the
fluid splashes away. This is because the radial velocity at
impact is 2 - 5 times the impmging velocity, as shown by
Heymann [2] and will be shown in this article, so the radial
flow can climb and fly off the mountains inthe short time after
impact. Thereafter, because the following radial velocity
rapidly decreases, and the velocity near the top of the particle
becomes quite small when it comes to the surface, the small
splat remains.

The mountains’ geometric shapes influence the splash



Fig.| Schematic of several kinds of idealized rough surfaces.
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Fig.2 Schematic of the flattening process.

phenomena. For exampk, the pyramid mountain shown in
Fig. 1-b causes much more splash than the cone mountain,
because the flat slope area can camry more fluid than the cone.
If the mountains’ arrangement is symmetrical to the axis
perpendicular to the surface through the particle center, the
splat shape is also symmetrical but the rim line is both
convex and concave. If the particle impinges directly onto the
top of the high large mountain, splashing occurs casily,
because radial flow is caused at the upper part of the particle
and the radial flow direction becomes upward as shown in Fig.
3. The actual surface roughness of a blasted substrate or
previously sprayed layer is much more complicated than these
ideal models, and thus the actual splats will be irregular. The
splashing and the splat morphology strongly depend on the
topography of the rough surface. When wesolve the flattening
process in this case, we must consider the interaction of the
flowing fluid and every mountain. It is almost impossible to
construct the equations to solve the problem, and to find the
conditions which cause splashing.

In case (2), flatening processes do not cause splashing
because the small mountains cannot produce the velocty or



Fig. 3 Schematic of the cross section at impact on a large
mountain surface.

the force in the vertical directions that is necessary to cause
the fluid to take off from the surface. This is similar to a deep
niver flowing on a slightly rough river bed, In this case, it is
satisfactory to consider the flattening process to be likethe one
on flat surfaces.

In case (3), the spreading phenomena are explained by case
(1) or (2) depending on the impmnging and surface conditions.
If the radial velocity is not large, splashing probably does not
take place. If splashing should occur, it is weak. If radial
velocity is large, or the mountain slopes’ angle makes the flow
velocity in parallel to the slopes large enough for the flow to
fly off the surface, then splashing occurs.

In addition to surface roughness, the wembility between a
splat and the substrate or a previoudy sprayed layer greatly
affects the flanening process, in particular the splashing
process. Even if the surface is smooth, splashing canoccur as a
splat does not wet the substrate at all, or very slightly. The
influence of wetabilty is not considered in this paper.

Modeling

This study refers to the modeling on a rough surface in
case (2). It is difficult to take the roughness into considerations
in case (1), because of the lack of understanding of the
characterization and the topography of such rough surfaces.
Also, we need to clarify the particle impact process ontorough
surfaces at the moment of collision. It is also difficuk to treat
case (3); however, in a case without splashing, we might treat
that as an extension of case (2).

It is nearly impossible to consider the interaction between
the expanding splat and every mountain in the flatening
process on a rough surfaces. A better way is to take the
average of the fluid flow field on a smallareaof rough surface
in order to characterize the flow field in the valleys. The flow
field of the lower fluid as shown in Fig. 4, which flows in the
valleys is very different from the flow field of the upper fluid,
which flows over the tops of the mountains. The lower fluid
flows much less than the upper fluid because the mountains
impede the lower part of the fluid flow. If the lower flow has
negligible affect on the upper flow, we can classify the fluidof
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& equal to the average depth of fluid in the valleys

Fig. 4 Schematic of the valley fluid converting to that on a
smooth surface

the disk intotwo parts the fluid that flows in the valleys and
the fluid that flows over the mountains. We assume that the
flow field in the valleys between Fand r+Ar, although
complicated, can be represented by the flow field in the fluid
area Arx3, where & is obtained by taking the average of the
fluid depth in the valleys. The entire fluid in the valleys canbe
expressed as a thin disk by adding all elementsin Ar from the
center to outer rim of the splat. Thus, the flazening model can
be represented by two disk layers on a smooth surface instcad
of the complicated splat on the roughened surface.

How do we chamacterize the surface roughness which
affects the flakenmng process? We can introduce two
parameters which influence the splat spreading process on the
rough surface: one parameter is the volume of the valley space
contained in a unit area on the surface, the other is a parameter
which gives an expression of the fluid’s “flowability” in the
valley.

The volume of the valleys isa function of the mountains’
height, shape, and arrangement. In the case of the cones surface
in Fig. 1-a, because the valley volume v is a function of acone
height a, radius of cone bottom circle b and distance /
between the bottom centers of adjacent cones, the volume can
be obtained on unit surface area as

2
"'["?}3’% (n

When b=, for example, when the bottom circle rims contact
cach other, we obtain w=(1-0.302)a. We can similarly
obtain the volume in an idealized case in which ¢ dependson
surface topography. Then, Eq. | is expressed as

v=(1-il (2]



where 7 is a parameter which is smaller than |, since </,
The volume W is expressed as the product of mountain height

and a coefficient as shown Eq. 2. Substituting (1-i)= j into Eq.

2, the expression becomes
v=jxa [3]

Valley volume ¥ can be expressed by two parameters J and
a.Ingeneral, / issmaller than 1, since 0<i<l.

On the other hand, determining the parameter which
expresses fluid mobility depends on the shape of the
mountains and their arrangement. We consider that the flow
field in the splat is represented in cylindrical coordinates
(0,r,8,2), and if the flow ficld in a spla& on a smooth, flat
surface is U(U, Uy U, ), we assume that the flow field in the
valleys on a rough surface is kxU,, where k isacoefficient
smaller than 1. The flow on & smooth surface is expressed
when k=1. We have now converted the problem of the
flattening process on rough surfaces into the flattening process
on smooth, flat surfaces by introducing parameters which
characterize the rough surface. The parametersare @, J,and
k instead of @ and V.

In Fig. 5, we assume the energy dissipation in region | is
negligible, because the velocity gradient is most likely small.
If the velocity gradient is large in that part, the spherical part
on the disk will change shape. The splat formation pictures in
the work by Engel [1] and inthe previous work by Ohmori and
myself [6], however, show that the shape of the spherical part
keeps its sphericity quite well. Thus, we consider the flow
fiek in just the disk (region I and II). We can assume the
radial flow field U, in the disk is:

U, =kCe®ri25-2), when0s:<8, 0Sr<Ry [4)

U, =i (2~ 8K2(h-5)- (2~ 8)) + k8’ ],
when §sz<h, OSr<Ry [5)

U,.kclrﬂ'iz.i'_‘.)., when 0<:<8, Rosr (6]
r

- (3'6){2("'8)‘ (z -5)}+k62

r
when S§<z<h, Rysr (7

U, = Czt

where U, isthe radial flow component, C;, C; and @ are
constanss, ¢ is the time after the impact, A is the disk
thickness, & is the average thickness of the fluid in the valleys,
and k& is the parameter which indicates fluid mobility in the
valleys. Equation 4 and 5 are 7 -component of the fluid field in
lower and upper part of region 11, respectively, andEq.6and 7
are r-component of the fluid field in lower and upper part of
region I11, respectively. We assume Ry =dy/2, where d; is
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Fig. 5 Schematic of the particle regions in which fluid flows
are different.

the particle diameter at impact,

The 6-component flow U, equals 0, because the flow
field should be symmetrical around the Z-axis The intemal
friction in the perpendicular direction is negligible, because
the disk is so thin that the energy dissipated by the velocity
gradient in the perpendicular direction is negligible compared
to that in the radial direction.

The assumed flow field shows that the radial flow velocity
will increase proportionally to the square of the height from the
fluid bottom, and will increase proportionally to the radius
from the center to a cerain radius Ry, and will decrease
inversely to the radius from K, to the outer rim. Wecall these
region I1 and III, respectively, as shown in Fig. 5. The
formulas are chosen so that the velocity gradient is equal to
zero on the top surfaces of region Il and I11. The flow field will
depend on time with an exponential exp(-a1), after taking into
consideration the fact that the spreading rate rapidly decreases
with the passage of time [6].

The disk volume of radius R(r) and thickness A attime ¢
after impact is expressed as

L]
xhR? = whRy? +zm°J“ I U, dzds (8]
Y0

where R, is the disk radius at time 5. The integration on the
right hand side represents the fluid volume which flows out
from region 11 into region 111 through the boundary & R,
during the time between 1, and £ . Substituting the sum of Eq.
6 and 7 into Eq. 8, the expression becomes

=AR? = ARy’ +2xRof J‘h[kc, (ar H28-3)
7,90 r
+Cpe (z- 6)[2("' 8)’- (2~ 5)} +k5% }tdt

_'-Ol

4 3 1 -y
- ﬂkoz +3‘C}{('l—8)3 +3w2(h-36)}x-‘—‘;—— [9]



thin disk
@ equals to the thin disk volume

Fig. 6 Schematic of the bottom part of a spherical particle
changing to a thin disk.

We obtain the disk radius as a function of time by solving Eq. 9
for R,and finding coefficients C;, @ and the disk thickness

k. Coefficients C;, C; and @ are found by solving the
equations of the boundary conditions. The boundary
conditions are:

(i) when a thin disk of thickness A begins to spread o the
impact point in the radial direction parallel to the surface, and
the particle keeps moving perpendicularto the surface at the
impact velocky v, for a time after impingement, the fluid
volume @ in Fig. 6 is expressed as

Hah
w»= I xrids
0

(10]

where r is the circle radius given by cutting the particle by
planes parallel to the substrate surface, and # isthe particle's
moving distance during time ¢ (i.e. H = vyt inthe short time
after impact). Since the fluid volume @ converts to the thin
disk, namely ® ==xhR’, the next equation holds.

\ |
ThR? = ‘{-z-do(!l +h)? -3(” +ll)3] (1)

Differentiatng Eq. 11 by ¢, and since (H +h)/d, <<1, the
radial expanding rate of the disk can be expressed as
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(H+h)

wé('-%‘";*’] Va(-52)

where d; is the particle diameter at the time of collision.
Assuming 1, =0, we obtain

().~

Differentiating Eq. 9 by r, the expression becomes

®_ 'SC’ {(h -8y +—t8’(h-35)}

& 2hR

(12

(13]

(14])

When =1, Eq. 14 becomes
®)... S s
te=ig

We obtain the next equation from Eq. 13 and 15.

c,[(a 5) .-a’

3 hvo Ry

T

(it) Because the fluid volume which flows out through the
boundary between region II and III is the same as the fluid
volume which flows into region [I1, the next equation holds.

Q%3 (16}

2&[]::C.e""(28-z)rdx
+J:C.e""r{(z-8){2(h-8)-(z-8)}+k8’ ]n]

- m[j Cye™™ 51”'_"24,
5 J" Cret (2~ 8)2(n-8)-(z-8)} + k87 a]
8 r

(17)

Solving Eq. 17, we obtain

CiR=C; [18]



(iii) At 1=, the radius becomes R = R, . Substituting ¢ ==, the particle kinetic energy at impact, the integration is the

fo=0and R«R, into Eq. 9, we obtain dissipate cnergy of friction by shear stress in the fluid, and the
second term on the right hand side is the increase in surface
h-s)’dw’(h-laj energy due to the increase in splat surface area duning the
46, 2 3 (19) flatening process. Substituting Eq. 4, 5, 6 and 7 into the
=3 PRI integration term in Eq. 25, and since the volume element 4V is
equal to rdrdfd:z in cylindrical coordinates, the expression

From Eq. 16, 18 and 19, we obtain becomes

G '% 3 1 )}Jg (20) J: Iv‘{#) e

Ro{(h—8)3+§k82[h—36

w mR, mix F} 2
-J j J rn[zkcle"‘rz(ﬁ-z)) rdrd@dzdt
C,--?- hvoRe £9. 0J0 Jo Jo
2{ 3.22(3 1 2h [21] LN
(as)’—wt.-s} IJJ‘J"_@_C..,
s ( ) “hdo o o‘{& i
a= %Jg (22) xl{(z ~8)2(h-8)-(2-8)}+k5* DI rdrd@dzdt
. R ple 2
Substituting Eq. 20, 21 and 22 into Eq. 9, and then substituting +rj I r A{%tczc"'m] rdrdfdzdt
fo =0 into the equation and directing our attention to the o870 78 v

relationships Rw=Df2, Ro=dp/2, R,=D,/2 and

- wR wle P :
hwdy’ [6R,?, we obtain an equation which expresses the splat *I '[ I r‘{“;"cz“-c
diameter expanding as a function of time as follows, S

lz=8)a(n a)’ (z-8)}+x8 ] — -
2
2.0 |_[|_$9T}e -’—‘52&1’1: (23)
do do D (,_ﬁq_r) D dy Solving Eq. 26 after substituting Eq. 20, 21 and 22 into Eq, 26,
D, the expression becomes
If dy?/D,? <<1, Eq.23 is simplified as J"I ‘{g_]’dm
odv \ &
2.2 J ! -exp(-zﬁ 39-19-:] (24) |, d? . D,
dy dy D, dy _ 943 muD, ’[-E+2—dg:7+hf]
2o aad . 64 do! 2
The unknown is still D, in Eq. 23 and 24. If we find D, the I-D
problem has been solved. The parameter &, / and @ donot »

appear in Eq. 23 and 24, They must be hidden in D, '
Let's find D,. The next equation holds because of the ( 8] ‘k28’
conservation of energy.

(3w [ A5 e
A% 5] e

where 4 and ¥ are the viscosity coefficient and the surface
tension of the fluid, respectively. In Eq. 25, the left hand side is

Substituting Eq. 27 into Eq. 25, the expression becomes
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1 4 (Y 2
2’3"(2)'°
1, do? D,
- +Ih—=
93 muvpD, ’[ 2 2D, do]

(28]

When surface energy is negligible, Eq. 28 is simplified as

1 dy? D,
ovdo _| 2243 2!;(‘5*‘;59;7"“;:‘J

SR
(44
oy aal @
[(’ :.) 2'5’_(' 3:.)]

Approximating the term in brackets on the right hand side in Eq.
29, and substituting pvyd,/p = Re into Eq. 29, the expression

becomes

Since the fluid volume ¥ in valleys on unit area equals the
average depth & of the fluid in valleys on unit surface arca,
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namely 8=y =j-a, substituting §=j-a into Eq. 31, the
expression becomes

We have obtained the equation expressing the relationship
between Reynolds number and flatening ratio  D{r =)= D,,.
the equation includes the parameters characterizing surface
roughness. If k=0, that is, the fluidcannot flow inthe valleys,
Eq. 32 is simplified as

((:t;)‘[%]]‘

Solving Eq. 32 or 33 for D, /dy and substituting the solution
into Eq. 23 or 24, we obtain the deformation ratio of the
expanding splat diameter to the particle diameter & impact as
a function of time, In particular, since Eq. 33 is a cubic
equation of (Dn/ds)’, the equation can be solved.
Furthermore, if D,.2/dy’ - ja/dy << 1, the simplified solution is
found as follows,

(33]

Dl

Re

&°

-l
4‘[1. a
4 \24d

g
[%+\E+[;

Equation 34 is the simplified formula of deformation ratios on
rough surfacesat k=0,

If (3jaf2dy)' Re is negligibly small, Eq. 34 becomes

I _ 1
F%%:—(I.N)z Re?

29-- I.OGRe;
dg

06
i
3 3 |
(3-’—] (l.os)"kc] -3 20067 Re?

[34]

x

LG_ 3 - 3
‘o) (1.06) Rc]

I—

(35]

We obtain more simplified solution of the flatening ratio.
This equation holds when surface roughness is much small
compared to the particle diameter at impact.



The equation by substituting the solution of Eq. 32, 33, 34
or 35 into Eq. 23 or 24 expresses the flazening ratios of the
expanding splat with passage of time on rough surfaces.

Numerical results and discussion

Some numerical results of this model show how roughness
affects flattening processes, such as, the influence of surface
roughness to flattening time and flattening ratios. The case ofa
moleen nickel particle will be shown and the conditions at
impact are shown in Table 1.

Table | Physical properties of a molten nickel particleat given
impact velocity.

impact particle particle viscosity
Material velocity diameter densil;/ coefficient Re
[m/sec] [um) [kg/m”] [mPa-s]

Ni 100 50 7905 49
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The flatening ratios of a spreading nickel splat with
different conditions of the rough surface with time are shown
in Fig. 7. It shows that flatening ratios and spreading rates
become smaller with increasing surface roughness, which the
parameter @ represents. The parameter a greatly affectsthe
flattening ratio and flattening time compared to parameter &,
which represents fluid mobility in valleys on rough surfaces as
shown Fig. 8 and 9. It is noted that the product of a@ and J
influences the flattening process, not @ or Jj alone, as shown
in Eq. 32, 33, 34 or 35. Figure 8 shows the relationship
between the mountain height of surface roughness a and the
flazening time o, when the splat diameter Dr) reaches
0.9D,,. The time 1y is obtained by substituting D=09D,,
into Eq. 24 followed by solving for r as follows,

1 D,
tog -—m-‘;:-%bg(l—os’) (36]

The graph shows that the flattening time decreases with
increasing roughness. The influence of the parameter & on the
flakening time is less than that of the parameter a. The
flagening time is 1.14 psec on a smooth, flat surface when a
50 um nickel particle impinges at velocity of 100 m/sec;
however, it is 0.86 usec on a rough surface of 2.2 pm and
fluid mobility of k=0 as shown in Fig. 8. The deviation of
flatening time on a rough surface from that on the smooth
surface is approximately 25% less and indicate that @ greatly
affects the flattening time.

Figure 9 shows that the flattening ratio isaffected strongly
by the parameter of mountain height @ on arough surface, but
affected weakly by the parameter of flowability k. Figure 10
shows that the increasing rates of flagening ratios with
Reynolds number become smaller with increasing roughness.
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The flagening ratio is strictly a function of a/d; and Re, not
directly of @ as shown in Eq. 32, 33, 34 and 35. Surface
roughness is related to the impinging particle diameter or
strictly to the splat thickness, because a larger particle
expands with a thicker splat compared to a smaller one with
other conditions the same.

When we consider applying this model to very rough
surfaces, although actual rough surfaces are much more
complicated than the idealized ones, it is difficult todetermine
the parameters J and @. We can probably determine / and
@ in the following ways: for example, takingthe average a of
the mountains' height in a certain area on the actual surface by
using an instrument which can measure the topography of
rough surfaces, such as a laser microscope; the average @ can
be applied to the model instead @. Also, using the microscope,
the valleys’ volume can be determined by putting a
hypothetical plane at proper height and angle over an actual
surface, the valleys' volume W can be calculated under the
planc. Since @ and the valleys' volume ¥ are determined, and
from j=@xy, J isdetermined.

On the other hand, it is very difficult to determine the fluid
mobility & in the valleys on both real and idealized rough
surfaces. Actually, the model is useful even if the mobility &
is treated as k=0, when the mountain height is small. We
need further studies to find practical parameters to
characterize real rough surfaces.

The mobility & in valleys scems actually to dependon the
flow velocity of fluid, although k isconsidered as constant in
the model, if the velocity is larger, & isexpected to become
smaller, namely, the mobility become small.

The relationship between surface roughness and splashing
has not been understood yet. The mechanism how roughness
causes splashing is also not clarified. Impact velocity might
affect splashing phenomena or, more strictly, the radial
expansion rate at impingement. The radial expansion rate af
impact is described in Eq. 13. Substituting h =24, /3D, into
Eq. 13, then substituting D,, /do =1.06Re"® into the obtained
equation, the expression becomes

(ﬁ)no =V 52% =¥ %‘% - '06",2"3"““"0 (37

Equation 37 shows the radial expanding rate at impact is
441 m/sec in the case of a molten nickel particle as shown
Tablke 1. In this case, the radial expansion rate is about 4.4
times the impact velocity. Although the splashing conditions
are not clarified, the impact velocity might be one of the factors
which cause the splashing. A larger impinging velocity has
more chance of causing splash if other conditions are thesame.
We must note the radial flow velocity is much larger than the
impact velocky. Larger impact velocty makes the expanding
splat thinner, I the splat is thinner, the flattening behavioris
more influenced by roughness, Therefore, the parameter
javp/dy probably expresses more strictly the tendency to
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splashing than impact velocity vg, however, the critical value
is not clear.

In conclusion, a formula which describes the flanening
process on rough surfaces is obtained in this study by
converting the process on a rough surface to that on a smooth,
flat surface as a splat consisting of two layers with different
flow fields, and introducing parameters characterizing rough
surfaces. This model shows the flatenng ratio and the
flattening time decrease with increasing roughness which have
been experimentally confirmed by some studies.
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